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ARTICLE INFO ABSTRACT

Keywords: Background: In spite of the prevalence of occupational neck disorders as a result of work force fluctuating from
Computational model industry to sedentary office work, most cervical spine computational models are not capable of simulating
Neck model

occupational and daily living activities whereas majority of cervical spine models specialized to simulate crash
and impact scenarios. Therefore, estimating spine tissue loads accurately to quantify the risk of neck disorders in
occupational environments within those models is not possible due to the lack of muscle models, dynamic
simulation and passive spine structures.

Methods: In this effort the structure, logic, and validation process of an electromyography-assisted cervical
biomechanical model that is capable of estimating neck loading under three-dimensional complex motions is
described. The developed model was designed to simulate complex dynamic motions similar to work place
exposure. Curved muscle geometry, personalized muscle force parameters, and separate passive and (electro-
myography-driven) active muscle force components are implemented in this model.

Findings: Calibration algorithms were able to reverse-engineer personalized muscle properties to calculate active
and passive muscle forces of each individual.

Interpretation: This electromyography-assisted cervical spine model with curved muscle model is capable to
accurately predict spinal tissue loads during isometric and dynamic head and neck activities. Personalized active
and passive muscle force algorithms will help to more robustly investigate person-specific muscle forces and
spinal tissue loads.

Multi-body dynamics
Curved muscle model
Occupational neck injury

1. Introduction

Annual prevalence rates for neck pain have grown to 27-48% and
are expected to continue to rise as a function of growing sedentary
lifestyles and reliance on portable electronics (Coté et al., 2008, 2009).
Hence, it is important to better appreciate the biomechanical forces
acting on the cervical spine (CS) in order to understand and prevent
workplace-related neck injuries, decrease their economic burden and
improve the quality of life for those suffering.

While cervical spine models intended to assess activities of daily
living are rare, previous impact models can inform model development
(Alizadeh et al., 2020). Early on, discrete static impact models of the CS
were developed to evaluate neck tissue injuries (Belytschko et al., 1978;
Huston et al.,, 1978; Orne and Liu, 1971; Prasad and King, 1974).

However, none of these models represented CS muscles as distinct
elements and muscle representation is critical for non-impact models.

The CS models that did include muscles, represented them as spring
elements (Deng and Goldsmith, 1987; Merrill et al., 1984; Williams and
Belytschko, 1983). Although these models provide a better physical
representation for muscle force direction, they relied on only the pas-
sive component of muscle force. As a result, these models were likely to
significantly underestimate spinal load during non-impact scenarios by
ignoring the contribution of active (contractile) muscle force.

Hill-type contractile muscle models were later implemented into CS
musculoskeletal models (De Jager, 1996; van der Horst et al., 1997;
Vasavada et al., 1998). To account for activation and create contractile
muscle forces, these models used sets of activation curves, which are
not able to provide realistic system dynamics.
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Several models were developed later which used optimization al-
gorithms to estimate muscle activation (Moroney et al., 1988; Snijders
et al., 1991). However such optimization methods have been criticized
as they fail to predict co-contraction of antagonist muscles which are
evident in complex multi-planar motions (Choi and Vanderby Jr, 1999;
Netto et al., 2008). Choi, 2003 demonstrated that co-contractions are
essential to provide stability in human CS. In addition, the muscle
forces predicted by an optimization approach depend greatly on the
chosen objective function and sets of constraints (Choi, 2003;
Mortensen et al., 2018), and disagreements have been observed be-
tween optimized muscle force and muscle activity as recorded by EMG
(Moroney et al., 1988).

A few EMG-driven CS models have been developed to account for
agonist and antagonist muscle co-activation (Huber, 2013; Netto et al.,
2008). However, most existing CS models do not take into account
person-specific musculoskeletal geometry, muscle parameters such as
force-length and force-velocity, and active/passive muscle gain. All
these factors are necessary to represent specific pathologies in clinical
applications (Klein Horsman et al., 2007) and to describe the mor-
phology of specific populations (Cazzola et al., 2017).

In this study, we developed and validated a novel personalized
EMG-assisted model that overcomes many of the previously discussed
limitations in order to better predict spinal tissue loading during com-
plex dynamic occupational tasks. Since this model will be used for
understanding neck loading under daily living (non-impact) conditions,
it was validated for isometric and dynamic conditions.

2. Methods
2.1. Model development

2.1.1. Model structure

In this effort, a well-developed and validated lumbar spine model
structure was crated based upon our previous effort building a canine
EMG-driven CS model (Alizadeh et al., 2017; Dufour et al., 2013a;
Hwang et al., 2016).

A conceptual diagram for the EMG-assisted CS model (CSM) de-
veloped in this study is shown in Fig. 1, which illustrates the inner
working of the model. Model inputs included: 1) Dynamic location and
orientation of body segments, including head and neck, determined
from an optical motion capture system; 2) Musculoskeletal geometry
including precise centroid lines of action (LOA) for 11 bilateral pairs of
muscles, derived from MRI; 3) Surface electromyography signals re-
corded at 6 bilateral locations of accessible major force-producing neck
muscles; and 4) Three-dimensional external forces and moments, as
measured by force transducers.

Model simulations were performed in Adams (MSC Software
Corporation, Santa Ana, CA, USA), a multi-body dynamic motion si-
mulation solution for analyzing the complex behavior of mechanical
assemblies.

2.1.2. EMG-assisted CSM musculoskeletal geometry

The proportions and shape of the head and neck geometry were
obtained from the MRI of an individual subject. The inertial properties
of the cervical vertebrae were obtained from literature (van Lopik and
Acar, 2007).

Individual CS muscles were traced and labeled in MR transverse
slices. The centroid of each muscle was then identified on each slice
(Alizadeh et al., 2018). Muscle LOAs were developed for 11 pairs of CS
muscles including upper trapezius, semispinalis capitis, semispinalis
cervicis, splenius capitis, splenius cervicis, levator scapula, sternoclei-
domastoid, hyoid muscle group, longus capitis, longus colli, and in-
tertransversari (Fig. 2). Intersegmental points attached to the vertebral
bodies, commonly referred to as via-points, were used in order to let the
muscle LOA follow CS curvature during complex dynamic neck activ-
ities (Table 1).

Clinical Biomechanics 80 (2020) 105169

2.1.3. EMG-assisted CSM personalized muscle force algorithm

The force of each individual muscle was obtained from a Hill-type
physiological muscle model. This model includes active (contractile)
and passive muscle force components (Eq. (1)).

F;(t) = ActiveF; (t) + PassiveF; (t)
F;(t) = (GainRatio; X CSA; X EMG (£); X Fjaemve [Li ()] X F, [vi(1)])
+ (Gaini X CSA! X E,pa:sive [Ll(t)]) (1)

According to (Dufour et al., 2013a), gain ratio (GR) was used for
active mucle force calculation in order to extend the model usability to
both healthy and injured subjects, since subjects with spine disorders
are not able to perform maximum voluntary contraction (MVCs). Due to
the complex muscular structure of CS and limitations associated with
SsEMG, 6 bilateral pairs of EMG signals were used to model the activa-
tion of 11 modeled muscle pairs. The muscle EMG signals “driving” the
various muscles can be seen in Table 2 (Alizadeh et al., 2018). The
surrogate SEMG for inaccessible muscles were chosen based on the si-
milarity of muscle function and attachments. The semispinalis cervicis,
splenius capitis, longus capitis, longus colli, and intertransversari were
surrogated with semispinalis capitis, splenius capitis, hyoid, hyoid and
levator scapula sEMG signals, respectively.

Eq. 2 shows the elements of the F-L modulation (Horst and Der,
2002). Based on this equation, the muscle is capable of producing op-
timal force when positioned at its optimal length(lo).

I—1Y
ﬁ,active [Li (t)] = kl( lO ) +1 (2)
Muscle force-velocity modulations (Egs. (3) and (4)) account for the
muscle's capability to generate force during concentric and eccentric
exertions as a function of muscle normalized velocity (Cadova et al.,
2014).

10 — v, lized
f[vi(t)]Concemic = +m;_1i£
10 + Vrormalize /kz (3)

08(1 + Vnormalized/lo)
f[vi(t)]Eccemric =18 —

1 — 0.765. Vnormalized/kzllo )

The passive component of muscle force was derived from the pro-
duct of: (1) gain, (2) cross-sectional area and (3) the force-length
modulation. Muscle gain represents the maximum force per unit area of
the muscle. Eq. (5) shows the passive force-length relationship and its
components (Woittiez et al., 1983, 1984, 1985).

ﬁ.passlve [L:i(®D] = €k4(%) -

An optimization algorithm selects personalized physiological
muscle parameters to minimize dynamic root mean square error
(RMSE) between person-specific measured “external” moments and
model-predicted “internal” moments at seven CS levels in the sagittal,
lateral and axial planes.

In this model, muscle force varies along the length of the cervical
spine based on the number of muscle attachments. It is assumed that the
muscle picks up a fraction of its total force at each origin, inversely
proportional to the number of origins, and likewise drops a fraction at
each insertion (Table 1). Each muscle segment is a muscle component
between consecutive via-points.

2.1.4. EMG-assisted CSM ligament model

The ligaments were modeled as single force vectors located between
ligament attachments, determined from anatomy books (Boyd et al.,
2001; Lang, 1993). Ligament properties were modeled as nonlinear
tension-only spring elements with material properties obtained from
Mattucci et al., 2013; Mattucci and Cronin, 2015. The ligament force
expression is shown in Egs. (6) and (7) (Mattucci and Cronin, 2015).
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Fig. 1. EMG-assisted cervical spine model conceptual diagram. Dashed line box encompasses calibration process in which personalized muscle force parameters such
ass gain-ratio (GR), passive gain (G), active and passive force-length (F-L) and force-velocity (F-V) modulation are optimized.
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Ligamentum flavum (LF), anterior longitudinal (ALL), posterior
longitudinal (PLL), interspinous (ISL), transverse ligament (TL), tec-
torial membrane (TM), apical ligament (AL), posterior atlanto-occipital
ligament (PAOL), posterior atlanto-axial ligament (PAAL), anterior
atlanto-occipital ligament (AAOL), anterior atlanto-axial ligament
(AAAL) were represented in this model.

2.1.5. EMG-assisted CSM intervertebral disc and facet model

The translational stiffness of intervertebral discs was simulated by
linear viscoelastic “bushing elements” in MSC Adams. A ‘bushing’
constraint allows all translational and rotational degrees of freedom to
be restricted by spring and damper relationships. Translational stiffness
and translational and rotational damping properties for bushing ele-
ments were obtained from (van Lopik and Acar, 2007).The rotational
stiffness of intervertebral discs was modeled by nonlinear restoring
moment dependent on the joint's multi-planar rotation (Panjabi et al.,
2001). It is not sufficient because it is not valid to translate EMG signals
directly to muscle force. Contact in the facet joint is modeled by linear
translational springs (Horst and Der, 2002).

2.2. Model validation

2.2.1. Participants

The ten subjects (5 male, 5 female) who participated in this study
were free from any musculoskeletal neck discomfort or abnormality at
the time, and did not have any prior neck disorder, injury or surgery.
Mean values and standard deviations of age, body mass, and stature of
the subjects were 25.3 (4.3) years, 69.8 (7.3) kg, and 170.5 (10.2) cm,
respectively.

2.2.2. Instrumentation

Muscle activities were collected via sEMG (Motion Lab Systems
MA300-XVI, Baton Rouge, Louisiana, USA) over fourteen CS muscles.
Customized Laboratory software and a data acquisition system (NI USB-
6225, National Instruments, Austin, TX, USA) were used to collect all
signals simultaneously and run the biomechanical model. Subjects ex-
erted against a small custom-built six-axis load cell (HT0825, Bertec,
Worthington, OH, USA) mounted on a custom height adjustable frame.
Kinematic data of individual body segments were collected via a 42-
camera optical motion capture system (Optitrack Prime 41,
NaturalPoint, Corvallis, OR, USA) with a 120 Hz sampling rate.

Electromyography activity of the muscles was collected with surface
electrodes and sampled at 1000 Hz. Signals were notch filtered at 60 Hz
and its aliases (up to 480 Hz), band-pass filtered at 30-450 Hz, and then
were rectified and smoothed using a fourth order low pass filter with a
cutoff frequency of 1.59 Hz. Kinetic data were captured at 1000 Hz.

2.2.3. Testing procedure

After arriving at the laboratory, subjects gave informed consent per
the University IRB.

Surface electrodes were placed over fourteen CS muscles based on
standard placement guidelines (Alizadeh et al., 2018), Fig. 3. Motion
capture markers were placed over 41 different locations on the body as
set by standard placement locations from OptiTrack's motion capture
software.

The isometric trials required subjects to stand in a neutral posture
while wearing an augmented helmet connected to the load cell and
custom-built frame (Fig. 4). The height of the frame was adjusted to
subject's height in standing posture. Tasks included isometric neck
flexion, extension, right/left lateral bending, and right/left axial rota-
tion. The participants were instructed to exert force ramping up to their
maximum comfortable exertion. The dynamic tasks involved single-
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Table 2
Recorder EMG and its paired muscle.

Nominal sSEMG muscle group Modeled muscle(s)

Semispinalis capitis Semispinalis capitis
Semispinalis cervicis
Splenius capitis
Splenius cervicis
Hyoid Hyoid

Longus capitis
Longus colli

Levator scapula
Intertransversari

Splenius capitis

Levator scapula

Fig. 3. Surface EMG locations for cervical spine muscles.

flexion, extension and lateral bending tasks. During the isometric tasks,
weighted AAEs ranged from 1.17-3.32 Nm. Fig. 5(b), shows mean and
standard deviations of multi-planar peak normalized average absolute
error (PNAAE) for the isometric flexion, extension and lateral bending
tasks.

3.2. Dynamic tasks

Fig. 6(a), shows mean and standard deviations of multi-planar
average R? for the dynamic flexion, extension and lateral bending tasks.
In terms of model performance during dynamic tasks, the means and
standard deviations of the multi-planar average R%s at each disc level
from C7/T1 to CO/C1 were 0.89 (0.02), 0.88 (0.01), 0.88(0.02), 0.88
(0.02), 0.89 (0.01), 0.86 (0.02), 0.75 (0.06), and 0.74 (0.07), respec-
tively. This indicates that the model-predicted moments follow the
pattern of the measured external moment very well for dynamic tasks.
Note that there is a slight decrement in performance at the more su-
perior levels of the CS.

Table 3 shows the summary of the means and standard deviations
for the multi-planar average absolute error (AAE) for all disc levels in
dynamic flexion, extension and lateral bending. Among the dynamic
tasks, weighted AAE from C7/T1 to COC1 were 1.76 (0.11) Nm, 1.05
(0.18) Nm, 0.91 (0.23) Nm, 0.78 (0.18) Nm, 0.75 (0.12) Nm, 0.91
(0.36) Nm, 1.25 (0.73) Nm, and 1.64 (0.67) Nm, respectively. Fig. 6(b),
shows the means and standard deviations of the multi-planar peak
normalized average absolute error (PNAAE) for dynamic flexion, ex-
tension and lateral bending tasks.

Clinical Biomechanics 80 (2020) 105169

4. Discussion
4.1. Model structure

The present paper describes the model structure and validation of a
newly-developed EMG-assisted CS model. Fig. 2 shows a three-dimen-
sional representation of the CS musculoskeletal geometry. The present
model overcomes many of the limitations of existing CS models (ref to
literature review article) by introducing important new features. The
advantage of this model is that it brings together a variety of novel and
existing features in order to improve accuracy and increase its ability to
assess injury risk in occupational settings.

First, the model structure is multi-dimensional and is capable of
considering the dynamic response of individuals. The CS moments and
tissue loads are derived from dynamic muscle force vectors and internal
neck muscle moment arms.

Second, the model implements MRI-derived curved muscle geo-
metry with via-points. Realistic representation of muscle LOA in bio-
mechanical models are important for determining muscle moment
generating potential (Vasavada et al., 2008). Due to the limitations of
sEMG in distinguishing between individual fascicle activities, we re-
presented each muscle with a single curved LOA. When assuming one
LOA for a muscle with several fascicles, the centroid path was de-
termined to be the best representation for the LOA (An et al., 1981) as
showed sufficiently small deviation from the standard muscle centroid
path obtained from MRI in multiple neck postures (Suderman et al.,
2012; Suderman and Vasavada, 2017).

Third, a Hill muscle model was fully implemented in this model. In
this study, we employed a muscle force calculation algorithm in which
both active and passive Hill muscle elements are taken into account. A
muscle's length and contraction velocity have a profound effect on its
ability to produce force and are accounted for in this model via force-
length and force-velocity modulation factors. The developed model
specifically determines these modulations from the subject's kinematics
and considers their effect on muscle force magnitude.

Fourth, realistic consideration for muscle co-contraction was
adopted by incorporating sEMG signals as indicators of muscle activa-
tion. The majority of previously-developed cervical spine models at-
tempted to predict muscle responses to a motion using simplifying as-
sumptions or optimization algorithms. Those approaches generally fail
to predict co-contraction of antagonist muscles (Choi and Vanderby Jr,
1999; Netto et al., 2008), which are seen in complex dynamic motions.
Studies have shown that ignoring co-activation could result in under-
estimating spinal load by 45%-70% (Granta and Marras, 1999). Choi,
2003 showed that CS stability relies on agonist and antagonist co-
contractions. Therefore, it is not surprising that through these non-
physiologic techniques, no study to date has been able to model the
head in equilibrium at upright posture under the effect of gravity
(Chancey et al., 2003). On the other hand, the EMG-based modeling
approach adopted in this model is able to account for individual dif-
ferences in activation pattern and magnitude.

Finally, the developed EMG-assisted CS model is unique in that it is
personalized in many ways: (1) The musculoskeletal structure is scaled
and positioned for each subject based on the segment dimensions; (2)
Model kinematics are multi-dimensional and capable of considering the
dynamic response of the individual. This allows the muscle LOAs to be
oriented according to the subject's dynamic posture; (3) Individual
muscle recruitment patterns were considered through sEMG; (4) Muscle
properties were optimized for each subject.

4.2. Model validation

During the validation study, we intended to evaluate the ability of
the model to predict spine loads that are biomechanically accurate and
physiologically plausible. This was accomplished by examining the
model predictions of internal moments over time and comparing this
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Custom-built adjustable frame

Fig. 4. Photo showing experimental setup for isometric contractions.

time history to the measured external moments. Overall, the amount of
error between our model estimations and the externally measured
moments were generally less than 25%. These findings suggest that our
model, while not perfect, is behaving reasonably well. The model per-
formed extremely well over dynamic motions and could account for at
least 80% of the variability in multi-planar spinal moments from level
to level and could generally predict spinal moments with less than 25%
average error from level to level. Thus, under both static and dynamic
conditions, the model performed well.

In the current study, multi-planar weighted fidelity measures rather
than single-planar measures were used as a performance indicator.
Summation of single-planar measures (sagittal and lateral planes) were
weighted relative to peak in-plane external moments, giving more sig-
nificance to the planes of the body that experience more significant
loads. Since the axial plane motion in isometric trials couldn't be iso-
lated, the axial plane was excluded from the calculations. The func-
tional validity of this measure was reported in a previous study (Dufour
et al., 2013b).

The results indicated that moment-matching performance was
better for flexion in dynamic tasks, while it is better for extension in
isometric tasks. This may be the result of poor representation of the
neural drive of extensor muscles. Semispinalis capitis and splenius ca-
pitis channels drove the semispinalis cervicis and splenius cervicis, re-
spectively. The upper trapezius signal was not used to drive all the
extensors since studies had shown that the splenius capitis activation
pattern is subject specific and significantly different from other cervical
spine extensors (Siegmund et al., 2007). At lower levels of activation,
during dynamic tasks, signals from the semispinalis capitis and splenius
capitis muscles may not have been strong enough to be picked up by
SsEMG accurately or were masked by cross-talk with their neighbor
superficial muscles such as trapezius. Therefore, the extensor muscle
contribution to balancing the external moments were underestimated.
On the other hand, during isometric exertions, higher level of activation
produced stronger signals from extensor muscles that result in better
extensor muscle contribution prediction. Studies utilizing needle elec-
trodes for the cervical spine deep muscles may be useful in testing this
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Table 3
Mean (standard deviation) of multi-planar AAE at cervical spine levels for
isometric and dynamic tasks.

AAE (Nm) AAE (Nm)

Isometric tasks Dynamic tasks

Flexion Extension Lateral Flexion Extension Lateral

bending bending
C7/T1 254 5.07 2.33 1.65 1.92 1.71
222) (272 1.73) (0.26)  (0.95) (1.35)
C6/C7 2.24 2.37 1.92 0.79 1.23 1.13
217) @1.67) (1.29) 0.23)  (0.37) (1.12)
C5/C6 2.20 1.34 1.58 0.60 1.17 0.96
(2.07) (1.04) (1.32) (0.14)  (0.34) (1.56)
C4/C5 211 1.02 1.09 0.54 0.99 0.80
(217)  (0.70) (0.90) (0.11)  (0.35) 1.7)
C3/C4 1.74 1.12 0.89 0.60 0.74 0.90
(215)  (0.79) (0.61) (0.06) (0.32) (1.41)
C2/C3 1.55 1.23 1.12 0.70 0.61 1.43
(1.89) (1.04) (0.97) (0.07)  (0.49) (1.53)
C1/C2 1.13 0.824424 1.55 0.73 0.73 2.30
(0.88)  (0.60) (1.81) (0.1) (0.31) (2.26)
C0/C1  0.90 0.67 2.82 0.88 1.54 2.51
(0.73)  (0.39) (4.99) (0.15)  (0.9) (2.26)

hypothesis.

In general, model performance for both isometric and dynamic tasks
were comparable. Model performance was greater in the middle cer-
vical spine levels (C5/C6-C2/C3) and lower at the upper levels (C0/C1
and C1/C2). Some of the possible explanations for lower performance
in the upper cervical spine could be: 1) there are several deep muscles
such as rectus capitis major & minor, along with the oblique capitis
superior and inferior, which have not been modeled in this study due to
the lack of information on their neural activity. These muscles have
large cross-sectional areas and are believed to contribute in head
movement and posture maintenance. Therefore, their active and pas-
sive contribution to the model moment production was limited; 2)
Craniovertebral joints are the most complex joints in the spinal column,
not only anatomically but with multiple sources of passive force pro-
ducers. The vertebral bodys' complex geometry, along with several li-
gaments and facet and synovial joints that are all unique to this region
(allowing greater range of motion), are extremely difficult to properly
model. Considering the limitations of the current model in representing
the craniovertebral passive force elements, one would expect to observe
the greatest model error for these joints.

Currently there are very limited criteria with which to compare the
model's spinal loads against, aside from failure loads of functional
spinal units. As mentioned previously, most of the cervical spine models
available in the literature were developed for crash testing. Low mag-
nitude loads and muscular activation during dynamic tasks were rarely
evaluated. This lack of experimental criteria makes validation of this
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Fig. 6. (a) Means and standard deviations of multi-planar R? at various levels of CS during dynamic flexion, extension and lateral bending tasks. (b) Means and
standard deviations of multi-planar peak normalized average absolute error (PNAAE) at various levels of CS during dynamic flexion, extension and lateral bending

tasks.

model by comparing to the reported data very difficult. Therefore, in
this study the validation process was based primarily on the model's
capability to estimate internal moments that match the measured ex-
ternal moments.

4.3. Model limitation

Several limitations should be acknowledged. First, our model was
only tested in neck bending and twisting conditions. Validation of other
types of occupational tasks would need to be tested. Second, there are
several muscles in the cervical spine inserting into the scapula, sternum,
and clavicle, which result in a coupling of the neck and the shoulder
moments. Accurate estimation of the motion and orientation of these
joints would lead to more accurate lines of action near the base of the
cervical spine. Third, facet joints or uncovertebral joints were not given
full attention. Proper contact force implementation would improve
model performance in dynamic tasks. Fourth, while the ligament re-
presentation in the model is believed to be reasonable in the middle and
lower levels (Mattucci et al., 2013), it should be improved in the upper
cervical spine. Fifth, the nuchal ligament has not been modeled in this
study due to its complex structure and limited knowledge of its bio-
mechanical properties. Finally, several deep cervical spine muscles
have not been modeled due to the lack of neural activation information.
A hybrid-EMG model, in which the contribution of deep muscles to
spinal moments could be estimated through an EMG-based optimiza-
tion algorithm could greatly improve the performance of the current

model.

5. Conclusion

In this article, the model structure and validation process of a novel
EMG-assisted cervical spine model was described. This model in-
troduced several new features including precise curved muscle geo-
metry, accurate representation of active and passive muscle force,
personalized muscle force-length and force-velocity relationships, and
realistic EMG-based muscle force calculation. This model allows for the
assessment of person-specific spine tissue loading along the entire
cervical spine during complex dynamic exertions. This model has been
examined to validate its performance during isometric static and dy-
namic exertions. This model was able to reliably evaluate three-di-
mensional spinal loads as a function of various external loads and neck
motions. Collectively, the results suggest that the predicted muscle
forces and spinal loads from this model would be acceptable for as-
sessments in multi-planar activities of daily living.
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