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Despite many years of research efforts, the occupational exposure limits of different risk factors
for development of low back disorders (LBDs) have not yet been established. One of the main
problems in setting such guidelines is the limited understanding of how different risk factors of
LBDs interact in causing the injury, as the nature and mechanism of these disorders are
relatively unknown phenomena. The task of an industrial ergonomist is complicated because the
potential risk factors that may contribute to the onset of LBDs interact in a complex way, and
require an analyst to apply elaborate data measurement and collection techniques for a realistic
Jjob analysis. This makes it difficult to discriminate well between the Jjobs that place workers at
high or low risk of LBDs. The main objective of this study was to develop an artificial neural
network-based diagnestic system which can classify industrial Jobs according to the potential
risk for low back disorders due to workplace design. Such a system could be useful in hazard
analysis and injury prevention due to manual handling of loads in industrial environments. The
results show that the developed diagnostic system can successfully classify jobs into the low and
high risk categories of LBDs based on lifting task characteristics. Copyright © 1996 Elsevier

Science Ltd.
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Introduction

Musculoskeletal injuries rank first among the health
problems that affect quality of life of the working
population (BNA, 1988; National Safety Council,
1990). These injuries include a large number of
disabling injuries to the lower back due to either
cumulative exposure to manual handling of loads over a
long period of time, or to isolated incidents of
overexertion when handling heavy objects. LBDs at
work are recognized as one of the main occupational
health problems in the United States (Ayoub et al,
1996). For example, Spengler et al (1986) reported that
while low-back injuries comprised only 19% of all
injuries incurred by the workers in one of the largest
US companies, they were responsible for 41% of the
total injury costs. Snook (1988) estimated the annual
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direct and indirect costs of back pain to be almost $16
billion.

As pointed out by the National Safety Council
(1990), in 1988 overexertion injuries across all industries
accounted for 28.2% of all work injuries involving
disability, while approximately 25% of all worker
compensation claims were related to back injuries. The
highest percent of such injuries occurred in service
industries  (31.9%), followed by manufacturing
(29.4%), transportation and public utility (28.8%), and
trade (28.4%). The total time lost due to disabling
work injuries was 75 million work-days, with the total
work accident cost of $47.1 billion, and the average cost
per disabling injury of about $16,800. The economic
impact of back injuries in the US alone may be as high
as $20 billion annually (BNA Report, 1988).

NIOSH (1981) cited epidemiological studies showing
that frequency rates (number of injuries per man-hour
on the job) and severity rates (number of hours lost due
to injury per man-hour on the job) of back injuries
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increase significantly when: (i) heavy objects are lifted,
(ii) the object is bulky, (iii) the object is lifted from the
floor, (iv) objects are frequently lifted, and (v) loads
are lifted asymmetrically (by one hand or at the side
with the torso twisted). Despite many years of research
efforts, the occupational exposure limits of different
risk factors for development of LBDs have not yet been
established. One of the problems in setting such
guidelines is the limited understanding of how different
risk factors of LBDs interact in causing the injury.
Furthermore, due to their multifactorial nature and
inherent complexity, the mechanisms leading to the
onset of LBDs are relatively unknown phenomena
(Ayoub et al, 1996).

Objectives

Current ergonomic techniques for controlling the risk
of occupationally related LBDs consist mainly of static
assessments of spine during lifting activities. However,
as discussed by Marras (1992), biomechanical models
and epidemiological studies suggest that the dynamic
characteristics of lifting increase spine loading and the
risk of occupational LBDs. Karwowski er al (1992)
proposed that the overexertion injury due to manual
load lifting should be considered as a discontinuous
dynamic process, rather than static phenomena, reflect-
ing dynamic changes in the state of the human
musculoskeletal system. This study showed that the risk
potential for low back injury due to manual lifting can
be conceptualized in view of the mathematical element-
ary cusp catastrophe (Thom, 1975). Such is the case of
low back injury, which may occur quite suddenly and in
a non-linear fashion. In general, the nature of such
changes may depend upon the combination of human
strength abilities, muscular fatigue and endurance,
spinal loading tolerance, as well as dynamic changes in
the state of equilibrium between these variables.
Modeling the mechanism of LBDs on the mathematical
elementary catastrophe improved our understanding of
the dynamic nature of overexertion injury phenomena.

The task of the industrial ergonomist is fairly difficult
because the potential risk factors that may contribute to
the onset of LBDs interact in a complex way, and
require him/her to apply elaborate data measurement
and collection techniques for a realistic job analysis.
The main objective of this study was to develop an
artificial neural network-based diagnostic system which
could classify industrial jobs according to the potential
risk for low back disorders (LBDs). Such a system
could be very useful in hazard analysis and injury
prevention due to manual handling of loads in an
industrial environment.

Artificial neural networks

Artificial neural networks, or neural systems, are
physical cellular networks that are able to acquire,
store and utilize experiential knowledge. A neuron is a
nonlinear mathematical model (Figure 1) that sums the
product of each input and its connection weight. The
neuron then acts on this summation with a nonlinear
activation function. In other words, the neuron has two
sections to it: a weighted-summation input and a
nonlinear output activation function. In the first
section, the neuron receives input signals. Each signal
is multiplied by a connection weight, then summed
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Figure 1 Model of a neuron

together. This portion essentially takes the scalar
product of the input vector x and the connection-weight
vector W yielding a value of net = Zx;W,. A general
nonlinear activation function such as the sigmoid
function o(net) = (1 + e ret)! (Figure 1) then acts
upon this summation.

A single neuron by itself is of little value. Only when
several neurons are used together in a layered network
will they yield useful results. Therefore, neural systems
are built of a dense mesh of neurons and connections
which compute simultaneously on all data and inputs.
Neurons perform as summing and nonlinear mapping
junctions. They operate in parallel, are organized in
layers and have feedback connections called weights.
Neural networks are trained to achieve a specific task.
Their architectures, the characteristics of the neurons,
initial weights and the training modes are determined
by the user. A network learns by processing a sufficient
number of training patterns supplied on its input.

In this study, a feedforward neural network with
error back-propagation training was implemented
(Rumelhart et al, 1988; Zurada, 1992; Habib, 1995).
During a supervised error-back propagation training,
input patterns are presented sequentially to the system
along with the correct response. The response is
provided by the teacher and specifies the classification
information for each input pattern. The network learns
from experience by comparing the targeted correct
response with the actual response. The network para-
meters (weights and thresholds) are usually adjusted
after each incorrect response based on the error value
generated. This process of comparison of correct and
actual responses is continued for each input pattern
until all examples from the training set are learned
within an acceptable error. During the classification
phase, the trained neural network itself operates in a
feedforward manner. The input pattern is passed
forward through the network one layer at a time from
the input to the output, with no feedback. The network
should be able to classify accurately in situations not
encountered in training. More details about the error
back-propagation training algorithm for a two-layer
feedforward network used in this study can be found in
Zurada (1992).

Neural network-based systems

Few neural-based network models were developed in
the field of medical diagnosis. For example, DESKNET
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is a neural network-based expert system developed to
instruct medical students in the diagnosis of papulo-
squamous skin diseases (Jones, 1991). The system has
96 input nodes (plus the bias input), one hidden layer
with 20 nodes and 10 output nodes. Input data contain
the results of dermatological tests, for example, the
location, distribution, shape, arrangement, pattern,
number of lesions, color, itching, the duration of skin
lesions, etc. If the symptom is present, the input is 1, if
absent, the input is 0. If specific symptoms or their
parameters were not known, the input was coded as
0.5. The output neurons were indicative of 10 diseases
diagnosed. The training data were comprised of 10
model diseases from 250 patients. The testing data
consisted of symptom data from 99 patients not
previously used in training. The skin diseases were
correctly diagnosed in 80% of the cases except for
psoriasis. Psoriasis patients were diagnosed correctly
only in 30% of the cases because this disease often
resembles other diseases within the papulosquamous
group, and makes it difficult to recognize even for
specialists.

Coronary occlusion is an example of another serious
disease that has been difficult to diagnose accurately
without the use of a neural network (Baxt, 1990). The
best diagnostic approaches wusing conventional
computer-aided diagnostic systems performed with a
detection rate of 88% and a false alarm rate of 26%.
Diagnoses made by physicians were reported as equal
to 88% and a false alarm rate of 26%. Diagnoses made
by physicians were reported as equal to 88% and 29%
for detection and false alarm rates, respectively. The
multilayer feedforward neural network that yielded the
best results contained 20 input nodes, one output node
and two hidden layers consisting of 10 neurons each.
The network accepted 20 variables relevant for the
diagnosis of coronary occlusion from 356 patients that
were randomly divided into training and test groups.
The results revealed that the network diagnosed the
patients with outstanding accuracy. Among the sick
patients, the disease detection ratio was 92% . However,
among the healthy patients the system provided false
alarms of disease in 4.3% of the cases. In spite of
errors, these results outperformed the above mentioned
computer-aided diagnostic systems and trained
physicians (Baxt, 1990).

Like coronary occlusion, the cause of back pain is
also difficult to diagnose despite being the most
common problem encountered by doctors, since many
of the symptoms present in patients who have a serious
spinal problem may also be found in those with less
severe problems. In addition, the presence of non-
organic symptoms makes diagnosis difficult. Bounds et
al (1988) developed a neural network-based system for
diagnosis of low back pain. The back pain was classified
in the following four classes: (1) simple low back pain,
(2) root pain, (3) spinal pathology and (4) abnormal
illness behaviour (back pain with psychological over-
lay). These classes were also used to represent the
outputs of the developed neural network. The system
had 50 inputs consisting of symptoms and answers to
medical history questions. Most of the inputs were
presented as 0 and 1, indicating the presence or absence
of the symptom or yes/no answer to medical history
questions. The non-binary inputs were taking values

between 0 and 1. The training data were collected from
200 patients with back pain who were followed over a
long period. Each category of output was trained and
tested by using 50 examples, 25 for training and the
remaining 25 for testing. In the comparison between
the network, three groups of doctors and the fuzzy logic
system, the overall performance of the network was
higher than that of the doctors and slightly worse than
the fuzzy logic system.

Recently, Karwowski et al (1994) presented a proto-
type of a neural network-based system for classification
of industrial jobs according to the potential risk for
LBDs. Although the system was trained using a limited
number of data for 60 high and low risk jobs, from
which 40 jobs were used for training and 20 for testing,
the preliminary results showed that the developed
diagnostic system could successfully classify jobs into
the low and high risk categories of LBDs based on
lifting task characteristics. The jobs were correctly
classified into the low and high risk categories in about
80% of cases.

Methods and procedures

Experimental data for model development

The experimental data for model development were
collected by Marras et al (1993). That study involved an
industrial surveillance of the trunk . motions and
quantification of workplace factors in high and low risk
of LBDs repetitive tasks. The data from 403 industrial
lifting jobs from 48 manufacturing companies were
used. These jobs were divided into two groups, high
and low risk of LBDs, based upon examination of the
injury and medical records. Whenever possible,
company medical records were used to categorize risk.
In some cases only injury logs were available. Each job
was weighted proportionally to the number of person-
hours from which the injury and turnover rates were
derived. The odds ratio for LBDs was defined as the
ratio of the probability that an LBD occurs (probability
of being in the high risk LBD group) to the probability
that an LBD does not occur (probability of being in the
low risk LBD group).

The low risk of LBDs group of jobs were defined as
those jobs with at least three years of records showing
no injuries and no turnover. Turnover is defined as the
average number of workers who left a job per year. The
high risk group jobs were those jobs associated with at
least 12 injuries per 200,000 h of exposure. The high
risk group category incidence rate of LBDs corres-
ponded to the 75th percentile value of the 403 jobs
examined. Out of the 403 jobs examined, 124 of the
jobs were categorized as low risk, and 111 were
categorized as high risk. The remainder of the jobs
(168) were categorized as medium risk and were
excluded from consideration in this paper. The depend-
ent variables in this study (Marras, 1993) consisted of
workplace and trunk motion characteristics which were
indicative of each job.

Marras (1992) developed a multiple logistic regres-
sion model, based on biomechanical plausibility, which
indicated that a combination of five trunk motion and
workplace factors allow us to distinguish between high
and low risk of occupationally related low back
disorders with the odds ratio of 1:10.7. These factors
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included (1) lifting frequency, (2) trunk twisting
velocity, (3) load moment, (4) the trunk sagittal angle
and (5) trunk lateral velocity. Load moment and lifting
frequency are the workplace factors. Lateral trunk
velocity, twisting trunk velocity and satiggal flexion
angle are the trunk motion factors. As the magnitude of
each of these variables increases, the risk increases.
The same variables mentioned above were applied on
input during network’s training and testing.

The predictive power of the above described model
(Marras, 1992) was found to be more than three times
greater than that of the NIOSH Lifting Guide of 1981,
and could be used to minimize the risk of occupation-
ally related low back disorder. It should be pointed out
here that while the 1991 NIOSH Revised Lifting
Equation (Waters et al, 1993) abandoned the concepts
of the AL and MPL, it is still comparable to the AL and
MPL limits. Careful examination of these limits and the
Application Manual (Waters et al, 1994) reveals that
the relationship between the load lifted on the job and
RWL is now defined by the lifting index (LI). The LI
value at 1.0 would be equivalent to the old AI concept.
According to the Application Manual for the Revised
1991 Equation (Waters et al, 1994) the LI value of 3.0
would be equivalent to the old MPL concept (MPL was
three times the AL according to the 1981 NIOSH
Guide). Thus, the 1981 and 1991 NIOSH Guides are
conceptually comparable.

Training and test data sets

Out of the 235 industrial jobs with low and high risk
values of LBDs recorded by Marras et al (1993), 148
jobs were randomly selected for network’s training.
This group of 148 jobs contained 74 low risk and 74
high risk jobs (Tables 1 and 2). The order of these 148
jobs in the training set was also randomized. The
remaining 87 jobs were used for testing the network’s
performance after training. This test group consisted of
50 low risk jobs and 37 high risk jobs (Tables 3 and 4).
The purpose of breaking the data into a training set and
a test set was to provide a check on a ‘real world’
situation. The training set was used to train the neural
network, a procedure that reduces the least mean-
square error between the correct response and the
actual response until all examples from the training set
are learned within an acceptable overall error. New
data which the system had not been exposed to were
then presented to the network, and its performance on
these new data patterns was evaluated.

Network input parameters

Each observation in the training data set contained the
five variables which described occupational risk factors
for development of LBDs. These variables were as
follows: (1) lift rate in number of lifts per hour
(LIFTR), (2) peak twist velocity average (PTVAVG),
(3) peak moment (PMOMENT), (4) peak sagittal angle
(PSUB), and (5) peak lateral velocity maximum
(PLVMAX). To prevent network’s saturation, these
variables were normalized to values from within the
interval [0, 1]. The classification variable (RISK of
LBDs) takes values of 1 or 0 for high and low risk jobs,
respectively. This variable was used only as teacher’s

response during the network’s training using the error-
back-propagation algorithm (Zurada, 1992).

Network architecture

Several feedforward neural networks architectures with
error back-propagation have been tested. All tested
networks architectures contained from eight to 20
neurons in a single hidden layer, and one or two
neurons in the output layer. In all calculations the
layers were fully connected. Figure 2 shows the
percentage of correct classifications versus the number
of neurons in a single hidden layer. It is clear that the
least number of misclassifications was obtained for the
network with 10 neurons and two neurons in a single
hidden layer and output layer, respectively. Therefore,
this network structure was chosen for further consider-
ation. The network accepted six inputs (five of them
were mentioned above and the sixth augmented input
equals —1) and two outputs trained for values (1, 0)
and (0, 1) for low and high risk jobs, respectively. The
weights V in the input layer and W in the hidden layer
were initialized to small random values of the absolute
value not exceeding 0.2.
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Table 1 Randomly selected jobs for low risk of LBDs used for network’s training
Job Liftr Ptvavg Pmoment Psup Plvmax Probability Class
of risk of risk
(lifts/h) “/s) (Nm) ©) °/s) (%)
1 762.5 6.1 19.3 45.0 42.8 57.3 Low
2 31.3 6.9 63.4 8.2 38.2 33.6 Low
3 31.6 5.1 195.7 32.6 44.8 55.8 Low
4 31.3 6.0 177.6 45.0 51.3 59.7 Low
5 90.0 6.1 198.2 45.0 40.2 58.1 Low
6 150.0 6.3 13.6 121 442 32,6 Low
7 313 7.3 107.6 -33 36.0 36.8 Low
8 72.5 2.7 2.3 20.5 49.7 30.6 Low
9 75.0 2.2 7.2 40.2 354 29.2 Low
10 75.0 2.3 4.4 =5.6 26.8 6.3 Low
11 75.0 3.7 95.1 -1.3 14.5 23.3 Low
12 75.0 6.7 114.8 3.4 23.1 31.9 Low
13 14.5 33 8.7 11.5 333 15.6 Low
14 5.4 4.8 26.1 12.5 43.1 25.3 Low
15 99.5 9.4 20.8 0.6 47.4 28.7 Low
16 137.5 4.4 2.5 10.9 14.4 16.1 Low
17 100.0 2.9 11.9 -5.1 12.0 4.0 Low
18 43.8 9.2 33 22.8 70.8 51.2 Low
19 150.0 3.8 77.0 0.8 28.9 320 Low
20 106.3 5.9 17.7 —-4.4 28.8 15.1 Low
21 200.0 15.0 14.2 29.8 39.3 60.4 Low
22 112.5 2.0 57.1 4.7 21.6 18.7 Low
23 112.5 7.6 349 -3.6 23.5 219 Low
24 50.0 15.0 81.5 -23 36.4 47.1 Low
25 80.0 7.7 61.8 1.1 31.5 30.1 Low
26 200.0 3.0 7.5 5.1 12.1 12.4 Low
27 87.5 4.1 88.8 2.1 28.0 29.9 Low
28 50.0 6.7 10.0 41.8 54.2 42.4 Low
29 75.0 2.9 39 29.2 39.7 30.9 Low
30 375 2.2 9.1 19.7 49.9 29.3 Low
31 50.0 4.5 1.4 25.8 27.3 28.6 Low
32 48.4 9.3 2.7 8.0 54.5 30.6 Low
33 47.3 6.5 4.0 17.3 28.0 25.8 Low
34 25.4 6.7 1.9 24.4 48.3 40.1 Low
35 76.1 5.9 6.6 8.8 38.6 20.5 Low
36 40.0 12.0 8.2 36.2 69.4 57.6 Low
37 62.5 5.6 1.1 26.1 35.7 334 Low
38 175.0 12.0 21.7 3.6 349 353 Low
39 56.3 11.0 99.2 -39 40.8 46.4 Low
40 225.0 3.1 3.6 30.7 19.6 36.0 Low
41 118.8 1.7 11.3 =37 22.0 8.0 Low
42 118.8 2.7 2.7 —4.8 29.2 10.5 Low
43 118.8 4.8 7.5 -0.6 60.8 25.8 Low
44 270.0 4.2 27.4 —-17.4 271 27.3 Low
45 135.0 4.1 1.2 -2.2 36.7 171 Low
46 81.3 8.1 5.9 45.0 76.3 51.6 Low
47 43.8 8.7 1.3 7.1 58.0 29.8 Low
48 45.6 1.0 1.2 2.2 322 7.4 Low
49 86.9 33 0.5 —12.1 37.9 12.2 Low
50 92.5 3.6 1.0 -5.9 24.6 8.3 Low
51 91.3 4.4 20.4 8.3 29.9 15.8 Low
52 21.3 4.2 6.3 8.3 334 14.0 Low
53 91.3 6.1 2.3 0.7 37.2 17.5 Low
54 87.5 3.8 0.5 1.6 42.8 14.9 Low
55 125.0 2.4 0.7 16.8 18.6 19.8 Low
56 600.0 2.0 2.8 4.6 16.9 21.7 Low
57 640.0 2.4 5.4 -0.8 28.3 25.8 Low
58 390.0 8.6 0.8 -25.2 27.9 36.4 Low
59 225.0 6.2 0.7 —-8.7 30.7 25.9 Low
60 84.0 9.5 11.6 4.5 43.7 25.5 Low
61 56.0 4.5 2.6 0.7 36.3 12.0 Low
62 56.0 1.3 1.0 20.3 27.0 21.6 Low
63 70.0 4.0 36.2 7.1 39.4 20.3 Low
64 45.0 2.9 17.7 15.3 30.3 17.7 Low
65 34.0 1.4 3.1 10.7 20.7 9.3 Low
66 57.0 4.6 23.6 7.3 20.8 10.6 Low
67 113.0 0.7 7.5 -14.5 28.8 10.0 Low
68 113.0 1.8 2.2 —-5.4 37.3 13.1 Low
69 113.0 4.2 4.5 32 22.1 10.3 Low
70 225.0 2.2 10.9 —14.7 28.3 18.8 Low
71 188.0 3.0 0.2 45.0 33.0 37.7 Low
72 68.0 33 6.1 27.5 28.4 27.0 Low
73 105.0 4.5 5.0 -0.3 19.9 9.3 Low
74 90.0 1.9 9.1 9.3 15.9 8.1 Low
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Table 2 Randomly selected jobs for high risk of LBDs used for network’s training

Job Liftr Ptvavg Pmoment Psup Plvmax Probability Class
of risk of risk
(lifts/h) (°/s) (Nm) ©) °ls) (%)
75 200.0 18.8 169.9 31.8 88.48 91.0 High
76 900.0 » 345 198.2 15.7 101.1 91.4 High
77 225.0 15.5 152.6 45.0 63.4 90.9 High
78 120.0 21.5 158.6 —14.0 73.3 64.8 High
79 40.0 15.9 126.9 2.9 27.7 454 High
80 167.0 7.3 21.7 45.0 75.4 58.2 High
81 120.0 12.8 6.6 45.0 41.5 53.5 High
82 900.0 2.4 7.9 —-32 16.5 21.5 High
83 75.0 3.0 29.4 =5.1 239 8.9 High
84 75.0 10.7 66.3 22.2 49.1 61.0 High
85 75.0 2.8 17.7 18.4 36.0 23.6 High
86 78.0 4.8 19.4 11.8 55.3 28.1 High
87 125.0 1.9 36.2 3.3 36.1 18.9 High
88 260.0 5.0 118.9 26.3 31.4 66.3 High
89 15.6 1.6 39.9 7.9 48.6 22.7 High
90 640.0 9.1 19.3 3.2 41.8 42.7 High
91 31.3 5.0 147.2 10.3 49.5 43.0 High
92 75.0 5.6 91.7 22.5 35.2 52.7 High
93 100.0 6.4 42.7 —8.4 20.6 19.9 High
94 25.4 10.3 42.5 —41.5 95.9 61.4 High
95 416.7 9.0 164.2 33.8 46.4 83.3 High
96 495.0 7.1 122.3 45.0 55.5 83.0 High
97 112.0 7.7 34.0 13.8 51.5 41.4 High
98 112.0 4.2 10.0 16.8 20.3 21.9 High
99 30.0 2.4 184.0 45.0 49.9 53.4 High
100 84.0 2.7 52.0 45.0 45.0 43.2 High
101 18.0 5.8 100.1 45.0 42.8 56.4 High
102 225.0 5.0 61.2 18.8 39.0 53.8 . High
103 113.0 12.8 71.4 45.0 61.1 75.4 High
104 113.0 4.9 45.0 45.0 48.2 40.7 High
105 113.0 1.2 5.8 0.5 40.8 14.4 High
106 75.0 4.8 91.7 —1.40 30.9 31.3 High
107 118.0 1.9 70.8 -0.6 19.2 22.2 High
108 105.0 12.2 5.3 —6.8 43.0 31.9 High
109 283.0 5.5 54.4 39.6 26.4 58.0 High
110 120.0 20.2 203.9 17.8 29.1 63.8 High
11 65.0 7.0 12.9 10.3 40.6 23.8 High
112 114.0 18.5 95.1 24.8 45.5 75.5 High
113 206.0 7.7 8.2 45.0 96.0 61.0 High
114 120.0 12.8 73.1 2.8 62.8 57.1 High
115 250.0 33 94.7 20.0 46.2 63.8 High
116 500.0 18.6 47.6 47.6 65.9 87.5 High
117 176.0 2.5 167.6 -7.6 43.3 40.1 High
118 75.0 9.2 117.8 13.7 49.1 55.0 High
119 75.0 11.4 123.2 9.6 36.1 50.2 High
120 310.0 4.7 42.4 12.5 39.1 479 High
121 75.0 10.7 24.5 21.4 68.3 54.9 High
122 37.5 121 79.7 11.7 81.7 62.9 High
123 150.0 1.4 45.3 4.0 27.4 20.4 High
124 76.0 15.1 127.8 45.0 65.9 79.8 High
125 90.0 19.4 122.3 45.0 57.9 78.1 High
126 31.3 3.9 134.8 11.1 19.3 31.0 High
127 31.3 7.6 258.2 38.1 38.1 38.1 High
128 75.0 33 113.1 25.5 36.1 50.1 High
129 20.0 10.1 29.6 45.0 50.2 50.5 High
130 318.0 6.8 70.7 9.1 36.4 55.6 High
131 148.8 6.3 99.1 99.1 26.8 46.1 High
132 50.6 10.1 40.8 31.8 39.8 - 50.0 High
133 31.3 4.0 68.9 15.4 18.0 33.8 High
134 200.0 13.4 88.3 17.1 20.4 66.1 High
135 251.3 34.8 69.3 5.0 61.2 67.4 High
136 62.5 20.3 35.1 3.5 46.3 37.0 High
137 178.1 2.4 5.4 13.9 13.5 19.4 High
138 116.7 2.2 67.7 254 82.3 59.1 High
139 45.0 10.7 9.5 20.1 43.7 42.0 High
140 250.0 8.4 13.0 12.0 36.1 41.4 High
141 15.3 2.5 197.1 30.8 315 46.7 High
142 156.0 1.7 85.4 13.1 53.9 50.5 High
143 131.0 12.8 23.4 45.0 59.9 62.6 High
144 225.0 15.3 51.5 4.7 324 49.8 High
145 182.0 2.9 47.1 —6.5 26.7 23.5 High
146 83.0 7.3 3.4 11.1 54.2 31.5 High
147 167.3 3.5 1.2 10.6 54.5 52.8 High
148 175.0 12.2 57.1 3.9 54.5 52.8 High
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Table 3 Results of the neural system-based classification of industrial jobs for low risk of LBDs
Job Liftr Ptvavg Pmoment Psup Plvmax Probability Class Model
of risk of risk Prediction
(lifts/h) (°/s) (Nm) ©) (°/s) (%)
1 90.9 7.7 12.6 35.0 32.4 38.4 Low Low
2 396.0 4.4 8.2 13.5 40.7 421 Low High
3 40.0 5.6 23.6 23.6 45.1 38.6 Low Low
4 75.0 6.1 1.5 29.9 48.4 40.0 Low Low
5 75.0 8.0 6.1 -0.5 33.7 18.3 Low Low
6 75.0 8.4 7.9 -1.7 44.7 23.1 Low Low
7 75.0 4.4 7.1 34 29.8 10.2 Low Low
8 7.3 11.1 5.1 45.0 48.7 48.4 Low Low
9 14.5 4.0 59.8 30.6 55.3 49.9 Low High
10 14.5 2.5 72.5 40.5 37.2 44.8 Low High
11 400.0 3.6 5.7 2.1 28.4 27.3 Low High
12 34.4 7.6 15.9 =59 25.8 13.9 Low Low
13 81.4 6.2 59.8 -0.8 28.6 25.8 Low Low
14 100.0 29 130.5 ~1.1 294 29.2 Low High
15 157.5 35 2.7 4.2 16.2 10.3 Low Low
16 100.0 5.4 52.3 -1.9 14.4 18.6 Low Low
17 50.6 8.7 5.4 -0.2 41.0 21.5 Low Low
18 50.0 2.5 9.3 15.0 62.9 29.0 Low Low
19 37.5 5.3 15.3 1.4 18.6 7.2 Low Low
20 37.5 1.5 16.3 18.9 37.3 23.8 Low High
21 112.5 5.1 1.2 13.2 63.2 35.2 Low High
22 48.1 13.8 59.9 -7.6 43.4 433 Low Low
23 46.9 7.4 65.1 -0.5 30.8 29.1 Low Low
24 95.6 7.6 7.5 13.6 28.6 26.5 Low Low
25 95.6 7.9 8.2 -0.2 34.6 20.2 Low Low
26 50.8 1.9 1.3 9.6 43.4 16.3 Low Low
27 25.4 3.9 5.7 2.7 38.5 11.6 Low Low
28 62.5 6.5 1.5 35.3 53.1 41.3 Low Low
29 50.0 7.2 5.2 41.3 41.3 19.9 Low Low
30 118.8 1.7 53.0 -6.8 30.5 21.2 Low High
31 112.5 2.9 0.9 -5.1 24.4 8.6 Low Low
32 117.2 4.2 3.3 25.3 28.0 325 Low Low
33 107.5 6.0 1.2 30.2 39.6 39.2 Low Low
34 59.1 6.7 2.9 0.5 38.8 17.0 Low Low
35 86.9 6.4 1.3 9.0 35.5 21.3 Low Low
36 71.9 11.8 78.8 33.0 49.4 68.1 Low High
37 1500.0 9.0 8.2 -13.0 16.3 329 Low High
38 132.0 7.4 0.9 3.6 36.2 22.8 Low Low
39 131.0 4.8 52.6 16.2 43.5 42.3 Low High
40 270.0 2.6 223 223 32.6 42.2 Low Low
41 68.0 4.1 15.9 11.2 23.0 13.4 Low Low
42 23.0 2.4 0.6 27.8 38.6 29.5 Low Low
43 12.0 7.4 349 33.7 26.5 38.5 Low Low
44 34.0 2.5 7.2 4.9 28.8 6.1 Low Low
45 23.0 5.1 68.0 42.4 45.1 50.4 Low High
46 113.0 0.9 2.6 -54 21.1 7.3 Low Low
47 45.0 6.0 4.8 -7.0 31.5 13.0 Low Low
48 150.0 17.4 6.8 —6.0 51.1 40.8 Low Low
49 165.0 10.5 9.5 15.0 67.5 52.9 Low High
50 128.0 3.5 0.2 6.6 30.3 14.8 Low Low
Table 4 Results of the neural system-based classification of industrial jobs for high risk of LBDs
Job Liftr Ptvavg Pmoment Psup Plvmax Probability Class Model
of risk of risk Prediction
(lifts/h) ©/s) (Nm) ©) °/s) (%)
51 420.0 10.5 133.4 33.6 36.0 82.4 High High
52 480.0 9.1 70.3 —-4.3 27.8 523 High High
53 720.0 29.4 275.9 32.6 54.9 94.8 High High
54 288.0 6.6 180.8 26.1 52.9 79.3 High High
55 145.0 2.6 54.4 —-5.8 26.4 22.2 High High
56 93.8 5.5 36.2 15.8 46.2 36.5 High High
57 75.0 4.5 8.8 311 62.5 42.0 High Low
58 75.0 1.4 42.4 12.2 39.7 25.5 High High
59 129.4 15.7 339 1.6 53.7 44.7 High High
60 83.3 3.8 81.5 =33 36.8 30.7 High High
61 40.0 13.7 139.5 45.0 119.9 80.2 High High
62 66.7 6.6 158.6 38.2 54.3 62.1 High High
63 45.0 11.3 186.9 45.0 43.2 66.6 High High
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Table 4 Continued
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Job Liftr Ptvavg Pmoment Psup Plvmax Probability Class Model
of risk of risk Prediction
(lifts/h) /s) (Nm) © /s) (%)
64 174.0 8.4 141.6 2.3 449 50.8 High High
65 56.0 2.4 43 1.0 53.1 14.9 High Low
66 169.0 94 73.4 13.9 33.8 53.9 High High
67 113.0 4.2 176.6 7.8 19.6 32.1 High High
68 500.0 1.7 47.6 -0.9 16.8 30.2 High High
69 175.0 10.5 118.4 14.0 29.6 58.9 High High
70 840.0 18.0 22.6 —8.8 31.7 48.1 High High
71 120.0 18.0 27.2 —-0.6 36.8 359 High Low
72 225.0 8.8 66.6 8.1 44.2 63.4 High High
73 120.0 5.4 116.1 0.4 50.7 43.1 High High
74 75.0 8.9 81.5 8.8 45.5 46.7 High High
75 145.0 5.8 7.5 20.3 54.7 43.6 High Low
76 37.5 1.1 10.2 234 49.7 33.0 High Low
77 37.5 1.0 31.7 9.9 37.7 18.5 High High
78 37.5 2.1 9.6 28.9 34.5 28.0 High Low
79 62.5 2.5 0.2 -34 30.3 6.5 High Low
80 37.5 7.3 57.8 24.1 53.3 54.7 High High
81 47.5 10.8 38.5 11.2 46.7 39.8 High High
82 126.9 134 31.7 21.2 96.4 66.3 High High
83 337.5 4.5 58.0 44.5 19.8 60.8 High High
84 87.5 11.7 14.7 11.1 471 37.5 High High
85 88.1 16.5 62.0 45.0 42.5 65.3 High High
86 28.0 5.2 19.8 38.6 59.3 41.9 High Low
87 69.0 10.1 53.8 16.9 55.0 52.3 High High

See text for definition of variables
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process is shown in Figure 4. The learning process is
encoded in neural network’s weights.

Results and discussion

‘Network performance’
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Figure 4 Training error versus number of training cycles

The final structure of the developed network
contained 12 neurons, with 10 and two neurons in the
hidden layer and the output layer, respectively. Each
neuron used a unipolar continuous activation function
f(net = 1/(1 + exp(—Aknet)), where net was defined as
a scalar product of the weight and input vector. The
learning coefficients and constants used in training
were as follows: steepness coefficient A = 1.0, training
constant 3 = 0.1 and maximum allowable error value
Epax = 5.2

The classical training algorithm for feedforward
multi-layer neural network with error back-propogation
was used (Zurada, 1992). The architecture of the
neural network used for training purposes is presented
in Figure 3, whereas the convergence of the training

After training of the network, a set with 87 remaining
jobs, not used previously in training, was applied in
order to test the performance of the developed lifting
job classifier. There were S0 low risk and 37 high risk
jobs in this set. The network based its decision on the
largest of the two output values. The architecture of the
neural network used for job classification is shown in
Figure 5. It is a very similar network to the network

hidden layer
input
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Figure 5 The architecture of the neural network used for job
classification
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Figure 6 Comparison of job classification performance of the
developed neural network system with application of the
NIOSH 1981 and the 1991 Guides

depicted in Figure 3. The only difference is that there is
no feedback from a teacher.

The developed diagnosis system classified 65 out of
87 cases correctly (74.7%). For 50 low risk jobs, only 14
jobs (28%) were incorrectly classified as high risk jobs.
Out of 37 high risk jobs, eight jobs (21.6%) were
incorrectly classified into low risk job category. The
results are summarized in Tables 3 and 4, and Figure 6.
As recently discussed by Marras et al (1996), the 1981
NIOSH Guide correctly classified 91% of low risk jobs,
but only 10% of the high risk jobs, whereas the 1991
NIOSH Guide correctly classified 55% of the low risk
jobs and 73% of the high risk jobs. It should be noted
that these numbers have also been publicly reported at
a DOE/OSHA hearing on the needs for an ergonomic
standard in April of 1994 (Washington, D.C.). In view
of the above comparison (Figure 6), the neural network-
based system developed in this study, which allowed on
average for correct classification of about 75% of the
analyzed industrial jobs (with both low and high risk of
LBDs), appears to be an improvement over the
application of NIOSH Guides (1981 and 1991),
especially with respect to identification of the high risk
jobs (78.4% correct classification rate).

Quality of job classifications

There could be several reasons for the misclassifications
of jobs found in this study. Some of the corresponding
industrial jobs had RISK (probability) values that
would classify them as high (or low) risk of LBDs, even
though they were originally placed in the low (or high)
risk groups, respectively. This reverse job placement
could be due to the jobs with high (low) risk value
assigned to the low (high) risk group based on the
collected epidemiological data in the field. The data
collected and reported by Marras et al (1993) may
contain possible misclassifications because of such
factors as: (1) misreporting of LBDs and corresponding
jobs in the company records, (2) not enough (person-

years) of exposure data to have properly estimated the
classification of a job, and (3) psychosocial factors that
may prevent correct recording of some of the injuries,
etc.

Several studies identified a variety of psychological
and psychosocial risk factors of LBDs which are related
to work environment (Wickstrém et al, 1978; Damkot
et al, 1984; Svensson and Andersson, 1989; Bongers et
al, 1993; Ayoub et al, 1996). Examples of such factors
are jobs satisfaction, time pressure, managerial respons-
ibility, or the extent of social support from colleagues
and supervisors. It was also reported that workers with
LBDs exhibited a higher frequency of psychological
symptoms than those without such disorders (Frymoyer
et al, 1983), and that psychological symptoms were
predictive of the future incidence of LBDs (Biering-
Sgrensen and Thomsen, 1986; Bigos et al, 1991).
However, Riihiméaki (1991) pointed out that since most
of these studies (Spengler et al, 1986; Svensson and
Andersson, 1983; Bigos et al, 1986) have been retro-
spective in nature, it is difficult to determine whether
these factors are antecedents or consequences of back
pain, and whether these factors play a role in the
etiology of LBDs, or only affect the perception of
symptoms and sickness behavior. In view of the above
discussion, it should be noted that the present research
project focused only on those workplace risk factors
that could be controlled through engineering design
changes, as suggested by the NIOSH 1981 and 1991
Lifting Guides.

As the misclassifications found in this study cannot
be easily corrected, they point to limitations of the
original data base used for the purpose of network
training. Some of the above misclassifications could be a
direct consequence of the original structure of the data
reported by Marras et al (1993), which was used here
for the purpose of model development. In Marras et al’s
(1993) approach, the risk of LBDs was defined as the
probability of being either in the high or low risk group.
Therefore, a single probability value, for example 0.78,
would be interpreted by the neural network as a
significant probability of a given job being in the low
risk group, or, alternatively, as the probability of this
job being in the high risk group. This was the case
because the neural network did not have any prior
indication whether a particular probability values itself
was originally associated with the low or with the high
risk group. Only the five input (task) variables collected
by Marras et al (1993) were indicative of LBDs risk
group categorization. This problem needs to be resolved
by either indexing the corresponding probability values
for the low and high risk groups, or by using the
normalized probabilistic sets with two separate
intervals, i.e. [0, 0] and [0.5, 1.0], in order to categorize
the risk probability values between the low and high
risk groups, respectively.

Conclusions

The results of this study show that an artificial neural
network-based diagnostic system can be used as an
expert system which, when properly trained, will allow
us to classify lifting jobs into two categories of
associated LBDs risk, based on the available job
characteristics data. The developed neural network-
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based classification system shows great promise because
it identifies and classifies industrial jobs into the high
and low risk potential for LBDs, and significantly
reduces the time consuming job analysis and classifica-
tion performed by traditional methods. Future work
will focus on validation of the network architecture,
and consider utilization of other input variables for the
neural network, including individual characteristics of
the workers, and the psychosocial variables, such as job
satisfaction, managerial responsibility, work autonomy,
time pressure, or the extent of social support.
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